
Two Touch System Latency Estimators:
High Accuracy and Low Overhead

François Bérard, Renaud Blanch
LIG, University of Grenoble, Grenoble-INP, UJF

BP 53, 38041 Grenoble Cedex 9, FRANCE
{francois.berard, renaud.blanch}@imag.fr

+33-476-514-365

ABSTRACT
The end-to-end latency of interactive systems is well known
to degrade user’s performance. Touch systems exhibit notable
amount of latencies, but it is seldom characterized, probably
because latency estimation is a difficult and time consum-
ing undertaking. In this paper, we introduce two novel ap-
proaches to estimate the latency of touch systems. Both ap-
proaches require an operator to slide a finger on the touch sur-
face, and provide automatic processing of the recorded data.
The High Accuracy (HA) approach requires an external cam-
era and careful calibration, but provides a large sample set of
accurate latency estimations. The Low Overhead (LO) ap-
proach, while not offering as much accuracy as the HA ap-
proach, does not require any additional equipment and is im-
plemented in a few lines of code. In a set of experiments,
we show that the HA approach can generate a highly detailed
picture of the latency distribution of the system, and that the
LO approach provides average latency estimates no further
than 4 ms from the HA estimate.

Author Keywords
Latency, Touch.

ACM Classification Keywords
H.5.2 User Interfaces: Input devices and strategies (e.g.,
mouse, touchscreen)

General Terms
Human Factors, measurement, performance.

INTRODUCTION
Every interactive system exhibits some amount of end-to-end
latency: the delay between an action of the user on the in-
put device, and the display of the corresponding feedback.
Latency has a strong negative effect on user’s performance
(both task accomplishment time and error rate) even at levels
as low as 100 ms [8]. Latency on direct-touch system is easy
to perceive: even a small temporal gap results in a clearly

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ITS’13, October 6–9, 2013, St. Andrews, United Kingdom.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2271-3/13/10...$15.00.
http://dx.doi.org/10.1145/2512349.2512796

visible spatial offset between the finger and the virtual object
controlled by the finger. The offset remains visible as long as
the finger is moving. Users can perceive latency on a direct
touch surface at levels lower than 3 ms [10]. A more recent
study seems to indicate that latency on direct touch devices
affects user’s performance in pointing tasks even at a level
as low as 1 ms [6]. Current commercial direct-touch devices
have latencies estimated in the range 50 ms to 200 ms [10].
These devices are thus far from optimal with respect to user’s
capabilities. Moreover, higher than optimal latencies are not
restricted to commercial devices, they are frequent in exper-
imental prototypes. This is particularly an issue when the
degradation of user’s performance due to latency can mask
the benefits of a new interaction technique implemented on
the prototype.

Despite its strong effect on user’s performance, the prob-
lem of latency is not widely acknowledged and evaluated.
Consumer touch devices are typically rated for their screen
size and definition, but their technical specifications never
includes latency. In research, even recent studies on touch
interaction, such as modeling target acquisition [2], do not
estimate nor mention latency. This may be the consequence
of the difficulty to accurately estimate interactive systems la-
tency. The literature offers several approaches based on the
recording of a video of both the device and the graphical out-
put, and then analyzing the video image by image to measure
a gap between the device and the output ([7, 10, 11, 13, 14,
15]). This process is time consuming and often requires a
complex physical setup to move the device in a controlled
manner. Furthermore, the manual aspect of the process limits
the number of latency estimations that can be performed. But
we will show that a statistical estimation (i.e. relying on many
repeated measures) is often a requirement for an accurate es-
timation of latency.

In this paper, after detailing the difficulties of latency esti-
mation, and reviewing previous works, we introduce a novel
“High Accuracy” (HA) approach to touch device latency esti-
mation. It requires an external camera and careful calibration,
but the data processing is automatic and results in a large sam-
ple set of accurate latency estimations. We then introduce a
second “Low Overhead” (LO) approach which, while not of-
fering as much accuracy as the HA approach, does not require
any additional equipment in addition to the touch device, and
can be implemented in a few lines of code. We run a set of ex-
periments to compare latency estimates based on the HA ap-

proach, the LO approach, and a high speed recording (HSR)
approach from the literature. Finally, we discuss the results
of the experiments and conclude.

LATENCY ESTIMATION
The latency of an interactive system is the delay between a
user’s action and the time the corresponding feedback is pre-
sented to the user. There can be many sources of latency, the
most common sources being the input device sensing time,
the communication time between the input device and the
computer, and the time to generate and display the feedback.
In this section, we present the basic principles of latency es-
timation in the general case, i.e. principles that apply to both
direct (e.g. touch) and indirect (e.g. mouse) devices.

Regardless of the sources of end-to-end latency, it has been
measured either by observing a spatial gap or a temporal gap
between a moving input device and the corresponding visual
feedback. In both approaches, the gaps are estimated from
pictures recorded with a camera and showing both the device
and the graphical feedback moving along some trajectory1.

The measure of a temporal gap provides a direct estimation
of latency. This can be done by choosing a landmark in the
video and counting the number of images between the physi-
cal device and the graphical feedback reaching the landmark.
The landmark does not have to be at the same location for
the device and feedback trajectories in the recorded images:
it can be a characteristic event such as reaching an extremum.
The main limitation of this “image counting” estimation is
that its precision is bounded by the frequency of the camera.
Even a high speed video camera at 250 images/s only pro-
vides a precision of 4 ms. Another limitation of this approach
is that it discards most of the recorded images, using only the
ones where the device and the feedback reach the landmark.

Latency can also be estimated by observing a spatial gap of
length g, in the recorded pictures, between the device and
the feedback. This is illustrated on Figure 1 in the case of
a direct-touch device. This approach requires the estima-
tion of the speed of the device s at the time the image was
shot, in addition to the estimation of the gap length. Latency
is then computed as g/s. The precision of this “speed” ap-
proach is thus only bounded by the precision of the gap and
speed estimations, it does not have the hard limit of the cam-
era frequency as with the previous method. In addition, all
the images in the recorded video can be processed to provide
a latency estimate. This approach, however, requires to super-
impose the trajectories of the device and the graphical feed-
back in the recorded images. While this is a natural feature
of direct-touch devices, it usually requires an ad-hoc physical
setup for indirect devices such as a computer mouse.

Setting aside the approach used, a single latency estimate is
not enough to represent the complex evolution of latency in
time. Users are exposed to the system latency in a contin-
uous world on a display that is updated in a discrete way,
typically at 60 Hz. When the display has just been refreshed,
1 In the paper, we call the pictures recorded by the camera cam-
era images or images, and the pictures displayed as visual feedback
display frames or frames.

g

Figure 1. Principles of latency estimation in the case of a direct touch
device, after [10]. A picture is shot showing both the finger and the
feedback (the bold stroke). The length of the gap g between the two
is measured. Assuming an estimated speed of the finger s, latency is g/s.

users are exposed to a minimal gap, corresponding to a mini-
mal latency lmin. But, until the next refresh, the feedback can
not be updated while the finger carries on its continuous mo-
tion. Hence users are exposed to a continuously increasing
gap, and increasing latency, until just before the next refresh
when the gap and latency lmax are maximal. One way to deal
with this phenomenon is to attempt to find lmin and lmax in
the recorded images, and to consider that on average users
are shown a latency of (lmin + lmax)/2. We call this the “min-
max” approach.

Estimating lmin and lmax, however, is viable only if the sys-
tem exhibits a constant latency for all its components up to
the display. This is often not the case: the different com-
ponents of the system generate variable amounts of latency.
The rendering time of the graphical feedback, for example,
can vary significantly depending on the complexity of the up-
date. Even a small increase of the rendering time may make
it pass the display refresh period, resulting in the end-to-end
latency augmented by a whole refresh period. In addition, the
interaction between the components themselves is a source
of variability: in general, input devices are not synchronized
with the display. An input device may sample at 100 Hz (a
common case for a computer mouse) when the display re-
freshes at 60 Hz. In the best case, the display is refreshed just
after the input device has produced a new sample. But in the
worse case, the input device’s sample may be close to 10 ms
old, adding as much to the end-to-end latency.

Because of the complex evolution of latency over time, the
average (lmin + lmax)/2 is not an accurate description of the
latency distribution. Moreover, the occurrence of the true
lmin and lmax (i.e. accounting for all sources of variation) may
be low, making impracticable their search “by hand” in the
recorded video. It appears that a high number of observed la-
tencies are required to model its distribution, which calls for
an automated approach.

RELATED WORK
Efforts to estimate device’s latency have been historically fo-
cused on the 3D tracking required in virtual reality systems,
as these systems tended to present high levels of latency that
hindered the feeling of immersion [1, 7, 9, 12, 13, 14, 15, 16].

The work by Liang et al. is the first report of a latency estima-
tor based on the recording of a video of the physical device
and the system’s graphical feedback [7]. The physical device

was attached to a pendulum so that its motion was known.
Latency was computed from the estimated spatial gap and
pendulum speed, using the “speed” approach. The pendu-
lum trajectory was used in several subsequent efforts [9, 14,
16]. Ware et al. also used the “speed” approach but with a
stepper motor moving the device back and forth in a linear
motion, instead of a pendulum [15]. Swindells et al. used the
“speed” approach with a turntable moving the input device in
a circular motion at constant speed [13]. In all these studies,
the analysis of the recorded pictures was manual, preventing
the collection of a large statistical sample of latencies. In ad-
dition, these studies relied on the input device moving along
a perfectly known trajectory so that its speed was known with
great accuracy. This approach is impracticable in the case of
many direct-touch input devices (e.g. capacitive) that require
an actual human finger for detection.

Pavlovych et al. did not rely on a well controlled trajectory: a
computer mouse was moved by hand back and forth along the
top edge of a display bezel [11]. Latency was estimated as the
temporal gap between the mouse and the cursor reaching the
edge of the display using the “image counting” approach. The
estimation was made at the resolution of the camera period:
16.7 ms for a 60 Hz recording. Analyzing 2 minutes of video
to make 10 measurements and then averaging them improved
the precision of the estimation.

Mine used a pendulum as in Liang et al., but introduced the
use of photodiodes to automatically detect the time when the
pendulum reached its vertical position and the time when the
update was displayed on a monitor [9]. This is the first re-
ported work that does not require the video recording of the
device and its subsequent analysis. The technique, however,
requires a specialized and expensive piece of equipment: a
recording oscilloscope was used to observe the timings of the
signals from the photodiodes. In addition, the analysis of the
signals remained manual.

To our knowledge, Steed’s approach is the only one allowing
the automatic estimation of latency by a system [12]. As in
Liang et al., the motion of a physical pendulum and its graph-
ical feedback was recorded in a video, but Steed’s approach
did not require the two trajectories to be aligned. The back-
ground of the scene was set to black, and a small light was
attached to the input device. This allowed the system to auto-
matically extract from the recorded images both the position
of the device and the position of the graphical feedback. Two
sine functions were then fitted to the extracted trajectories,
and the latency was estimated as the phase shift between the
two sines. The trajectory having the shape of a sine makes
this approach difficult to apply to direct touch. Moreover, the
function fitting step averages the variations of latency into a
single fit, producing a single latency estimate.

All the approaches described above were designed for sys-
tems using indirect devices. Measuring the latency of direct-
touch systems is a much more recent concern. Ng et al. offer
the first report of a method based on the “speed” and “min-
max” approaches [10]. This method is illustrated on Fig-
ure 1 and Figure 7. A high frequency video camera (240 Hz)
records a finger sliding along a graduated ruler on a touch

surface. The feedback is a simple line showing the finger’s
trajectory. The speed of the finger is estimated by using the
ruler to measure the distance travelled by the finger between
two chosen camera images, and using the camera image pe-
riod to estimate the time elapsed between these two images.
The speed estimate is then used in individual images to con-
vert the spatial gap between the finger and the graphical feed-
back into latency. Looking at the recorded video image by
image, the authors find the images with the minimal and max-
imal gap, divide the gaps by the speed to estimate the mini-
mal and maximal latency, and average the two as an estimate
of the average latency. As explained in the previous section,
this min/max approach only works because the touch surface
used by Ng et al. is custom build and synchronizes the sens-
ing with the display. As a result, the only source of latency
variation is the display frame period. Another limitation of
this approach is that, in order to estimate the gap between the
graphical feedback and the finger, the touch position must be
inferred from a top view of the finger. This is likely to intro-
duce some inaccuracies in the estimation. We will illustrate
this problem in the “Experiments” section.

HIGH ACCURACY TOUCH LATENCY ESTIMATION
In order to achieve high accuracy in touch latency estimation,
we design a new approach that builds on and improves upon
previous approaches. Its principles are illustrated on Figure 2.
As with previous approaches, we use an external camera to
capture frozen images of the physical position of the device
(the finger) and the current state of the system (the number
of the frame currently being displayed). We estimate latency
as the time difference between the date of the frame currently
displayed, and the date the recorded trajectory will reach the
current touch position of the finger. The current touch posi-
tion is computed from a clearly visible pattern attached to the
finger, as illustrated on Figure 3. Our approach thus provides
a direct estimate of latency (i.e. it does not require an estima-
tion of the speed of the finger). This approach has three main
benefits compared to the literature:

• we use the recorded trajectory as our time measurement
instrument. This removes the precision bottleneck of the

Frame #135

Figure 2. Principles of the High Accuracy (HA) estimation. The dis-
played frame counter (#135) is encoded by the single displayed bit (black
square). The plain thick line represents the event trajectory: the events
received by the system so far. The dashed line is the future trajectory. La-
tency is the time it will take for the event trajectory to reach the current
physical finger position.

camera image counting approach used in previous direct
estimations of latency.

• we use a visual pattern attached to the finger to allow the
extraction of an accurate touch position from images of the
finger as viewed from above.

• we use simple visual patterns to encode the number of the
current display frame and to locate the finger touch posi-
tion. This allows automated processing and thus the col-
lection of a large sample set of latencies.

More specifically, our approach is made of the following
steps:

• Capture an image of the finger and the display showing the
current frame number.

• Process the captured image to extract the current frame
number and the position of the physical finger.

• Perform a lookup in the frame log to find the display date di
of the current frame. This is also the date when the camera
image was captured.

• Perform a lookup in the event log to find the date de when
the trajectory reaches the observed physical finger position.

• Estimate the latency as de−di.

The event trajectory is only shown on Figure 2 for illustration
purpose: our approach does not need to perform any image
processing with it, and thus it is not displayed by the system.
Also, at the time the image is acquired by the camera, the
event log obviously does not contain its future. Hence latency
can not be estimated on the fly: camera images, frame log and
event log are recorded for short sessions (a few seconds), and
latency is computed on this data after the recording.

These simple principles present a number of difficulties: con-
verting coordinates back and forth the display and camera co-
ordinate systems, extracting the touch position from an image
of a finger, extracting the frame counter, and finally finding
the date when the trajectory reaches the observed touch posi-
tion. We detail these difficulties in the following sections and
present our solutions.

Camera-Display Calibration
Our approach requires that the observed touch position recov-
ered from the captured image is searched along the system
event trajectory expressed in display coordinates. We thus
need a fairly accurate correspondence between the camera
and the display coordinate systems.

We assume a pure perspective projection between the display
plane and the camera projection plane, i.e. a homography. We
calibrate the homography by recording an image of a black
display, and then 12 successive images, each capturing a sin-
gle dot displayed using a regular grid at known display coor-
dinates. We compute the difference image between the black
image and each dot images, find the biggest set of connected
pixels in the difference image, and compute the center of the
set. This center is used as the dot’s image coordinates. From

θ

d

Figure 3. Result of the camera-touch calibration. The green annotations
have been added to the picture. The paper pattern (white dots on a
black background) is attached to the finger. The large red circles indicate
the detected position of the pattern’s dots. The small red disk shows
the result of the transformation (d,θ) applied to the dots, but with an
offset to move it out of finger occlusion. The small green disk shows the
currently measured touch position, with the same offset.

this set of 12 correspondences, we perform a least-square es-
timation of the homography matrix. Using this matrix H and
its inverse H−1, we can convert coordinates from display to
camera, and from camera to display.

Camera-Touch Calibration
Our approach requires that we estimate touch positions from
camera images of a finger as seen from above. However,
when touching a display, a finger hides the touch position.
Furthermore, visually tracking fingers, which are non-rigid
objects, is a difficult process that may not yield enough ac-
curacy for our purpose. We solve both problems by print-
ing a small pattern on a piece of paper. The pattern is about
5cm×2.5cm, it is made of 2 large white dots (8 mm radius)
on a black background. We attach this pattern to the touching
finger by means of double sided tape. The thin sheet of paper
does not hinder the capacitive touch sensor, but it provides
an easily detectable pattern at a fixed transformation (trans-
lation and rotation) from the touch location, as illustrated on
Figure 3.

We calibrate the transformation between the pattern and the
touch position by recording the touch events and camera im-
ages for a small time span (1 s) during which the finger must
remain stable. The procedure is cancelled if the finger moves
by more than a pixel. At the end of the recording, we locate
the two dots of the pattern in the recorded images (about 50
images are recorded in 1 s). The dots appear as the bright-
est objects in the scene and can be easily located: we simply
threshold the image, perform connected pixels analysis, and
filter the resulting connected pixel groups according to their
shape (expected size and aspect ratio close to 1.0). The center
of the two sets of connected pixels is used as the dots’ coordi-
nates in the image. We transform these two centers into dis-
play coordinates using the inverse homography matrix H−1.

We then compute the average dot positions and touch event
position across the 1 s recording. We use the most distant dot
from the touch location as the origin of the transformation,
and define the transformation as T (d,θ) where d is the dis-
tance between the origin and the touch position, and θ is the

angle between the dots line and the line passing through the
origin and the touch position. This transformation is illus-
trated on Figure 3. We repeat this procedure at different loca-
tion of the display and different finger orientation and verify
that the calibrated transformation remains stable.

Dating the captured image
Our latency estimation requires that we get a fairly accurate
estimation of the capture date di of the image. It is not pos-
sible to rely on the date when the image is received by the
system: it may include several delays due to the camera it-
self, the transmission of the image over the IEEE1394 link,
and the IEEE1394 driver stack on the computer. We thus use
a visual tag to synchronize the camera acquisition with the
display.

We increment a frame counter at the display frequency (i.e. at
60 Hz). The frame counter is represented on each displayed
frame by both a number and a tag. The tag is chosen so that it
can be recovered from a camera image by simple image pro-
cessing, it is illustrated as the bit vector at the top of Figure 2.
We use a white square of 15×15 pixels to represent an “on”
bit; “off” bits are not displayed. As we know where we draw
the bits on the display, we can use the homography matrix
H to transform bit positions into image coordinates. We thus
know where to look for each bit in the captured image.

We initially displayed a direct binary representation of the
frame counter in the bit vector. However, sometimes the cam-
era grabs an image of the display while it is switching to the
next frames. Bits of the previous frame are being replaced
by bits of the next one. This results is some grey bits which
can be classified either as “on” or “off”, resulting in an er-
roneous value for the frame counter. We thus resorted to a
simpler bit pattern. We display 16 bits, only one of them is
“on” at any time: the “on” bit represents the remainder of the
integer division of the frame counter by 16. As there is only
a single “on” bit in every image, the processing becomes a
simple search for the brightest bit. This is robust to the dis-
play’s frame switch: only very dark images, exactly at the
frame refresh, will not yield a frame counter, but there is no
risk to misinterpret the bits as with the binary representation.
However, this frame counter representation is incomplete: it
does not allow to extract the frame counter from a single im-
age. We simply increment the frame counter by 16 when we
observe that this remainder drops from one image to the next
one.

This process allows us to robustly associate a camera image to
the display frame it captured. To get the date di of the image
capture, we maintain a log file of the dates of the frame dis-
plays. We first planned to implement this log file by storing
the system’s clock after the “swap buffer” call in a standard
double-buffer display loop synced with the display refresh.
Using GLUT/OpenGL for the rendering, this was more com-
plex than anticipated: OpenGL being optimized for through-
put, not latency, the glutSwapBuffer call is pipelined and re-
turns without blocking before the frame is actually shown on
the display. We use a solution found in the implementation
of the Psychophysics Toolbox [3]: after the “swap buffer”
call, we draw some pixels on the new back-buffer and require

OpenGL to synchronize with a call to glFinish(). We verified
that this effectively makes glFinish() to block until the first
buffer is shown on the display. We can then use the system’s
clock at the return of glFinish() as the date of the frame.

Another difficulty is that each display frame is shown for the
duration of the refresh period: 16.7 ms on our 60 Hz display.
The system clock at return of glFinish() corresponds to be
the beginning of this period. We have no way, however, to
estimate at which point of this 16.7 ms refresh period the im-
age was captured. This is not a problem for our purpose,
as it provides a way to measure various samples in the best
case/worst case range. Our camera is not synchronized with
the display and acquires images at a different frequency. We
plot a histogram of the offsets produced by the combination
of the camera’s 49.7 Hz capture rate and the display’s 60 Hz
refresh rate. The histogram shows that the sampling of the re-
fresh period is almost regular and has more than 40 different
offsets in the range 0 ms to 16.7 ms.

Estimating latency
We locate the two dots of the paper pattern in the captured
image, apply the inverse homography H−1 to convert them
into display coordinates, apply the camera-touch transforma-
tion T (d,θ) to estimate the touch position i of the physical
finger at the date of the image di.

The last step of our approach is to estimate the date when the
event trajectory reaches the physical finger position i. This
step is illustrated on Figure 4.

Due to inaccuracies in the calibrations and to non rigid mo-
tions of the finger on the paper pattern, the overlap of the
event trajectory and the processed image trajectory is not per-
fect. As a consequence, the event trajectory does not pass
exactly through the image position (this is shown on Figure 4
with the event trajectory passing below the image position i).
However, as the two trajectories remain very close, we can
project the image position on the closest segment of the tra-
jectory. We notice, however, that the trajectory received from
the touch display is uneven, resulting in some inaccuracies in
the date estimation. However, we are working offline on the
whole trajectory data. It is thus possible to reconstruct the
smooth trajectory of the finger by fitting analytical functions
to the raw events.

For each captured image, we find the segment in the event tra-
jectory that is closest to the finger position i. We then select a
sample set of 11 events in the neighborhood of this segment,
and we use the RANSAC [4] algorithm to fit a two dimen-
sional 2nd order polynomial P(t) to this sample set.

P(t) = x(t)
y(t) =

axt2 +bxt + cx
ayt2 +byt + cy

(1)

We compute the tangent of P(t) as dP(t)/dt, rotate it by π/2
to get the normal, and then solve for the date t = de which
correspond to the projection of the finger image position i
on P(t) along the normal. de is the estimation of the date
at which the event trajectory reaches the physical position of

580

590

600

610

620

380 400 420 440 460 480 500

e

i

p

F

Figure 4. Estimating latency. Abscissa and ordinate represent the x and y position (pixels) of a finger moving from left to right. A two dimensional 2nd

order polynomial curve (red discs) is fit to 11 points of the event trajectory (blue diamonds). The position of the finger extracted from the image (black
cross i) is projected on this curve (red circle p). Latency is the difference between the date of p and the date of the frame F (illustrated as a small black
segment) that was shown on the touch surface when the image was acquired. (e) is the most recent event defining the touch position in the frame F.

the finger. The fit of an analytical function to the raw events
yields the estimation of this date at a greater precision than the
event sampling period. Finally, we get our latency estimation
as:

latency = de−di (2)

In the “Experiments” section below, we discuss a set of ex-
periments that we ran in order to assess the accuracy of our
approach.

LOW OVERHEAD LATENCY ESTIMATION
The HA approach is our best effort to get the most accurate
estimation possible, but it requires a camera, a paper pattern
attached to the finger, and several calibration steps.

In this section, we introduce a Low Overhead (LO) latency es-
timation technique. This technique does not necessitate any
additional hardware and allows latency estimations in a mat-
ter of seconds.

Idea
Whatever the technique used to measure the latency, two
pieces of information are needed: the actual spatiotemporal
trajectory of the finger, and the corresponding trace as ac-
quired by the input device and displayed by the output device.
The latter part is easy to get: any interactive application can
subscribe to the system cursor events, and any touch device

Figure 5. Low Overhead (LO) estimation. Directions given by the system
to prescribe the finger trajectory. The radius of the wheel is spinning
at constant speed, and the user should keep a finger on the black disk
located at the intersection of the circle and the radius.

can be setup to control the system cursor in absolute mode.
The first part is the one that has proved difficult, and required
the use of additional hardware (e.g. a camera to track the fin-
ger) and some means to associate the event trace with the
actual position of the finger.

To eliminate the difficulties of the first part, we turn the prob-
lem around: we let the interactive application specify the fin-
ger trajectory, and rely on the user to follow its indications.
If users are able to precisely follow the trajectory prescribed
by the application, then both the actual finger trajectory and
the event trace are fully known by the application and can be
directly compared to estimate the end-to-end latency.

Implementation
After various experiments, we chose a simple trajectory:
moving at constant speed along a circle. The system dis-
plays a circle of radius 420 pixels (11.4 cm) centered in the
screen. It also displays one radius spinning at constant speed
s = 3rads−1 (about 2 seconds per revolution). A disk ma-
terializes the intersection of the circle and its radius. We
call that display the wheel (Figure 5). The user is then in-
structed to follow as precisely as possible the movement of
this intersection. Since this movement is highly regular, we
expect that people are able to synchronize their hand move-
ments with the wheel and superimpose precisely their index
with the disk. In addition, we expect that people are able to
make self-assessments about their respect of the prescription.

We compute a latency at each display refresh. We use the
most recent touch event. The event provides the position of
the finger. Once converted from the Cartesian screen coordi-
nates into the wheel polar coordinates, this position yields the
angle αe of the ray coming from the center of the wheel and
passing through the event position. The event was received
while the display was showing the prescription at an angle
αp, memorized at the previous display refresh. We compute
the latency as:

l = (αp−αe)/s (3)

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0 1 2 3
time (s)

la
te

nc
y

(s
)

4 5

Figure 6. Example of latencies measured with the LO approach.

This measure of the latency is made for every frame, i.e. at
60 Hz. It means that for each revolution of the wheel last-
ing about 2 seconds we get 125 samples of the latency. By
plotting the latencies of the recordings, such as illustrated on
Figure 6, we observe that the measured latencies have areas of
higher latencies and areas of lower latencies. These areas last
for several display frames, hence they can not be explained
by the variation of the system’s end-to-end latency. We as-
sume that these variations are due to the user being some-
times late and sometimes early with respect to the prescrip-
tion. This indicates that users are not able to trace a perfect
circle at strictly constant speed, which is not a surprise. We
expect, however, that user’s variations are neutralized on av-
erage. This will be shown by the experiments presented in the
next section. The requirement to average the measurements,
however, implies that the LO approach is not meant to pro-
vide a detailed picture of the latency distribution, but rather a
simpler latency average.

EXPERIMENTS
In order to assess the validity of our approaches, we ran a
set of experiments to compare the latency of a HA system, a
LO system, and the “high speed recording” (HSR) technique
used by Ng et al. [10]. All approaches were implemented
using the same hardware setup, and the graphical rendering
was implemented within the same software in order to insure
that we were comparing the same end-to-end latency.

Hardware Setup
Our system runs on 3.4 GHz Intel Core i7 processor, and uses
an NVIDIA GeForce GTX 680MX graphic card. As a touch-
sensitive display, we use a Wacom Cintiq 24HDT multi-touch
and pen display. The display has 1920× 1200 pixels and a
sensor grid of definition 129× 83 sampled at 103 Hz. After
a first set of experiments, we noticed that the Wacom driver
was performing some advanced processing on the signal in
order to smooth the reported touch positions. This results in
varying latencies depending on the speed of a moving finger.
The driver also provides an API that gives access to the un-
processed 2D signal of the device. We chose to work with
this raw signals in order to get a finger speed independent
and minimal latency, but at the cost of reduced spatial sta-
bility. Touch positions are computed as the center of gravity
of peaks in the 2D signal, which results in a somehow jaggy
trajectory, as illustrated on Figure 4.

Image capture is done with an AVT Marlin F131B camera
connected to the computer with a IEEE1394 400 Mbit/s link.
The camera is equipped with a CMOS sensor, which allows
readout of only subparts of the sensor to achieve higher image

Figure 7. High Speed Recording (HSR) approach, after [10]. Images
#262, #309, #311 and #319 of a 242 Hz video. The top and bottom images
are used for speed estimation. The two middle images show maximal
and minimal gaps between the graphical feedback and the finger.

rates. In the HSR experiments, the camera is set to capture
images of 440×180 pixels at 242 Hz. The camera is set on a
tripod and captures an area of 108×44mm of the touch dis-
play as viewed from above. In the HA approach, the camera
is set to capture images of 900× 600 pixels at 49.7 Hz. The
camera is set in front of the touch display, at about 40 cm. It
captures a 22× 15cm region of the display, including about
825× 550 display pixels. The camera is not used in the LO
approach.

High Speed Recording (HSR) experiments
We replicate the approach from Ng et al. [10]: we put a high
precision ruler on the touch surface in the field on view of the
camera, as illustrated in Figure 7. We record a finger sliding
along the ruler on the surface at approximately 40 cm/s. We
analyze the recorded video image by image in order to isolate
the two images where the finger is entirely visible a) just after
entering the field of view, and b) just before leaving the field
of view. We use the ruler to estimate the finger displacement
as 90 mm in 57 camera images at 242 Hz, hence we estimate
the average speed at 383 mm/s. We then locate two images
where the gap between the finger and the display feedback is
maximal and minimal. Using the speed estimation, we con-
vert the gaps to a maximal latency of 61 ms and a minimal
latency of 47 ms, which averages to 54 ms.

Our finger position estimations are based on the center of
the finger nail, which has been shown to be what users aim

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

27 29 31 33 35 37 39 41 43
Latency (ms)

45 47 49 51 53 55 57 59

Pr
ob

ab
ilit

y

Figure 8. Histogram of estimated latencies with the High Accuracy ap-
proach (plain bars). Histogram of normal distribution with identical
mean and standard deviation (hollow bars), for comparison.

with [5]. We ignore, however, the actual position where the
touch is registered by the display, hence our estimations prob-
ably includes an offset to the actual sensing position. This is
not a problem for the speed estimation because the difference
of finger positions neutralizes the offset. The offset, however,
will be the source of sensibly different estimates for the gap
length, and thus the source of different latency estimates. Us-
ing the left side of the finger on the same images, we obtain
a maximal latency of 47 ms, a minimal latency of 34 ms, an
average latency of 40.5 ms. When using the right side of the
finger, the maximal latency is 76 ms, the minimal 63 ms, and
the average 69.5 ms.

High Accuracy (HA) experiments
We make several recordings of the finger attached to the pa-
per pattern, sliding on the surface. A typical recording lasts
about 18 s and provides around 770 processed images and la-
tency estimations. All the recordings provide estimates of the
average latency in the range 42.5 ms to 43 ms. A typical range
of latencies in a single recording is 28 ms to 59.5 ms with a
standard deviation of 5.76 ms.

The range of observed latencies is about 31 ms wide. With
a known input sampling of 103 Hz and frame rate of 60 Hz,
we can explain a range of width 26.4 ms: the minimal latency
is observed just after a display refresh where the input had
just been received, the maximal latency is observed at the end
of the refresh (16.7 ms) when the input was about to be up-
dated (9.7 ms). The additional 4.6 ms of observed range may
be explained by other sources of variability such as the OS
scheduling.

Figure 8 shows a histogram that illustrates a typical distribu-
tion of latencies. A Shapiro-Wilk test on this distribution re-
veals that it does not follow a normal distribution (W=0.994,
p <0.01). Indeed, the distribution presents a plateau around
the average. We interpret this as follow. Latency probabil-
ity should be uniform in an interval of the size of the display
refresh period (16.7 ms) centered on the average: the proba-
bility of making an observation of latency at any point of the
display refresh is constant. The further latencies are observed

from this interval, the less probable they are as they require
the conjunction of less and less probable events such as ob-
serving latency just after a display refresh on an event that
was just updated.

We make a series of recordings where we programmatically
add controlled delays in the delivery of input events. We test
delays of 50 ms, 100 ms and 200 ms. We estimate latencies
that are the sum of the nominal latency (43 ms) and the con-
trolled delay, at ±2 ms.

Low Overhead (LO) experiments
Novice experiment
9 subjects (average age 32) participate in a first experiment
aimed at validating the wheel approach. All participants are
member of a research group on Human-computer interaction.
They are familiar with the concept of a system end-to-end
latency, but novice to the usage of the wheel.

We first explain the wheel and its goal to each participant.
The participant can then take some time to practice at follow-
ing precisely the movement of the wheel. Then we explain
how to start and stop a recording of a trajectory by pressing
and releasing a finger on the display with the second hand.
The participant is then instructed to perform recordings of
trajectories lasting at least 2 laps of the wheel. After each
recording, we ask the judgment of the participant about the
quality of the record. First, we ask if the record should be
kept at all. We then ask if this particular record is better than
all the participant’s previous records. When the participant
feels that there is not more improvement (usually after 10 to
20 recordings) we move to the second part of the experiment.

In the second part, some measurements of the latency distri-
bution are shown to the participant as numbers drawn at the
bottom of the display after each recording. We show the range
of variation of the latency, its average and median values, and
the standard error characterizing the regularity of the latency
observed during the record. We explain the meaning of those
values, and let the participant make as many recording as de-
sired before answering our question: from the participant’s
experience, what is the latency of the system?

The results of this experiment are summarized in Table 1. The
first part of the experiment is dubbed “blind” since the partic-

Table 1. Novice estimation of the device latency (all values in ms).

blind non-blind
participant subj. obj. subj. obj.

1 29.11 32.33 38.5 42.43
2 50.10 44.27 40.5 40.04
3 47.10 48.96 40 40.06
4 40.03 41.87 40 43.44
5 46.22 43.44 32.5 35.43
6 37.25 33.12 42 41.37
7 39.43 44.04 40 41.13
8 40.50 32.88 37 37.44
9 43.06 43.06 37 38.47

upper CI 46.20 45.11 40.77 41.91
mean 41.42 40.44 38.61 39.89

lower CI 36.65 35.78 36.45 38.04
CI width 9.55 9.33 4.32 3.87

ipants could not rely on the statistics to make a judgement
about the quality of their trials. The second part of the exper-
iment is dubbed “non-blind”. For each part, we report a sub-
jective (subj.) value, i.e. a value that relies on the judgement
of the participant, and an objective value, i.e. a value that do
not rely on his judgement. The objective value is the average
latency of the recording that exhibits the smallest standard er-
ror, i.e. where the participant was the most regular. For the
blind part, the subjective value is the average latency of the
recording selected by the participant as being the best record-
ing. For the non-blind part, the subjective value is simply the
latency reported by the participant. The last lines of Table 1
report the mean of those values across participants and the
lower and upper bound of the 95% confidence interval (CI).

The reported means are in close agreement, since they dif-
fer at most by 2.81 ms. For each part of the experiment, the
widths of the CIs are smaller for the objective estimations
than for the subjective ones, which advocates for a procedure
where the subjective evaluation is not used. The CIs are no-
tably thinner in the non-blind part of the experiment (about
4 ms) than in the blind part (about 9.5 ms). This may be due
to a training effect, but it may be a benefit of showing the
statistics to the participants: having an objective feedback on
their performance may encourage the participants to keep try-
ing at improving the quality of their recordings.

Expert Experiment
In a second experiment, we want to explore the accuracy of
the LO approach when operated by a user that has had signifi-
cant training with the wheel. We thus chose one of the authors
as the operator. We make a series of 10 successive recordings
without allowing rejection. The 10 latency estimates are in
the range 39.8 ms to 43.1 ms with an average of 41.2 ms and
a CI of 40.4 ms to 42 ms.

We also make a series of recordings with programmatically
added delays as with the HA experiments. In this case, the
touch events are setup to include an additional random de-
lay, unknown to the operator, in the range 50 ms to 300 ms.
For each delay, the operator makes a single estimation but
includes around 6 revolutions of the wheel. This procedure
is repeated 10 times, the whole experiments lasts about 15
minutes. Table 2 shows the setup latency (random delay plus
the 43 ms nominal latency of our device estimated with the
HA approach), the latency estimated by the operator, and the
magnitude of the difference between the two.

Table 2. Expert estimation of controlled latencies (all values in ms).

setup estimated abs(difference)
93 96 3

289 291 2
182 183 1
323 321 2
123 126 3
256 258 2
256 257 1
316 321 5
162 170 8
286 290 4

The average magnitude of difference is 3.1 ms, with a stan-
dard error of 0.64 ms. The higher bound of the error CI is at
4.42 ms.

DISCUSSION
The HA and LO approaches are in close agreement, providing
estimates of the average latency of our system at, respectively,
43 ms and 39.9 ms, less than 4 ms apart. All but one partici-
pants of the LO experiment, as well as the expert, provided an
estimate a few milliseconds lower than the HA estimate. This
may indicate that our implementation of the LO approach in-
troduces a small systematic negative bias.

The HSR experiment illustrates the imprecision of the ap-
proach as, depending on where the touch location is cho-
sen relative to the finger, it provides estimates in the range
40.5 ms to 69.5 ms, a rather large 29 ms interval. The HA es-
timate falls within this interval, showing that both approaches
are in agreement. The HA estimate is on the lower side of
the HSR range, suggesting that the touch location is on the
left side of the finger. This is coherent with the images of
Figure 7 where the finger appears to be leaning to the left.

The HA approach allows to effortlessly collect of a large sam-
ple set of latencies, for example 770 estimates in a record-
ing lasting 18 s. This is a major improvement over previous
approaches that either relied on the manual labeling of the
recorded data, or provided automated estimation but for a sin-
gle estimate per recording. The large sample set provided by
the HA approach increases the probability of observing the
true extremums of latencies exhibited by the system. In ad-
dition, it provides a detailed picture of the distribution of la-
tencies, revealing a non Gaussian distribution with a plateau
corresponding to the display period. This kind of precision
opens the way to novel techniques aimed at reducing latency,
for example by improving in software the synchronization be-
tween the sensing and the display.

The HA approach has already proven useful to estimate the
accuracy of the LO approach. We were surprised to see how
close to the ideal novice participants were able to get: all
participants but one estimated latency less than 5 ms away
from the HA estimate. The experiment with an expert op-
erator showed a strong stability of the approach with a 95%
confidence interval of width 1.6 ms. It also showed a sur-
prisingly good accuracy with an average estimate only 1.8 ms
away from the HA estimate.

The LO approach offers both precision and accuracy in the or-
der of 4 ms, which is on par with, if not better than, previous
approaches. This is achieved without any equipment (e.g., a
camera) in addition to the touch surface, and the measurement
is performed in a matter of seconds. We hope that this ap-
proach will contribute to the widespread adoption of the end-
to-end latency evaluation in interactive touch systems. This
should prove particularly useful for designers to evaluate the
influence of their designs on the latency of the system.

We recommend to use the non-blind protocol and to retain the
recording with the lowest standard error, since it produced la-
tencies having the smallest variability. Also, the LO expert
experiment with random controlled latencies seem to show

an increasing difference between controlled and estimated la-
tencies on the last 3 runs of a short 15 minutes session (see
Table 2). This seems to indicate a fatigue effect. Indeed, slid-
ing a finger in perfect circles at constant rotational speed is
not an easy task as it involves the proximal joints of the el-
bow and shoulder. When estimating the latency of a single
particular device, this should not be a problem. If many esti-
mations are required, the LO approach will be more accurate
by allowing some resting time between estimations.

CONCLUSION AND FUTURE WORK
In this paper, we introduce two novel approaches to the es-
timation of touch systems end-to-end latency. Thanks to its
automated processing of the captured images, the High Ac-
curacy (HA) approach provides a high number of accurate
latency estimations with little effort from the experimenter.
Using this approach, we provide the first detailed image of the
distribution of latencies in a typical interactive touch system.
We also introduce a Low Overhead (LO) approach. It also in-
cludes automated data processing, and it is the first approach
that does not require any external equipment for latency esti-
mation, thanks to the cooperation of a human operator. In a
series of experiments, we show that novice operators of the
LO approach are able to provide estimations no further than
4 ms from the HA estimate. We hope that the LO approach
will open the way to the widespread characterization of touch
system’s latency.

We see several extensions to this work. Adapting the HA and
LO approaches to indirect input devices, such as a computer
mouse or a 3D tracker, should be possible by using a pro-
jected graphical display. Indirect devices can be made “di-
rect” by sliding them on the projected display, provided that
their reported position are correctly calibrated with the dis-
play.

The LO approach could be improved in different ways. One
of them is facilitating the operator’s task. The circular tra-
jectory requiring the complex coordination of the elbow and
the shoulder, it could be adapted to require a simple forearm
oscillation for example. Also, the effect of the training of op-
erators was not studied in this work, it may suggest ways to
improve the accuracy of the approach.

ACKNOWLEDGMENTS
This work was partially funded by the French government in
the FUI project 3DCI (AAP14).

REFERENCES
1. Adelstein, B. D., Johnston, E. R., and Ellis, S. R. A

testbed for characterizing dynamic response of virtual
environment spatial sensors. In ACM Symposium on
User Interface Software and Technology (UIST), ACM
(1992), 15–22.

2. Bi, X., Li, Y., and Zhai, S. FFitts law: Modeling finger
touch with Fitts’ law. In ACM Conference on Human
Factors in Computing Systems (CHI), ACM (2013).

3. Brainard, D. H. The psychophysics toolbox. Spatial
Vision 10, 4 (1997), 433–436.

4. Fischler, M. A., and Bolles, R. C. Random sample
consensus: a paradigm for model fitting with

applications to image analysis and automated
cartography. Commun. ACM 24, 6 (1981), 381–395.

5. Holz, C., and Baudisch, P. Understanding touch. In ACM
Conference on Human Factors in Computing Systems
(CHI), CHI ’11, ACM (New York, NY, USA, 2011),
2501–2510.

6. Jota, R., Ng, A. N., Dietz, P., and Wigdor, D. How fast is
fast enough? a study of the effects of latency in
direct-touch pointing tasks. In ACM Conference on
Human Factors in Computing Systems (CHI), ACM
(2013).

7. Liang, J., Shaw, C., and Green, M. On temporal-spatial
realism in the virtual reality environment. In ACM
Symposium on User Interface Software and Technology
(UIST), ACM (1991), 19–25.

8. MacKenzie, I. S., and Ware, C. Lag as a determinant of
human performance in interactive systems. In ACM
Conference on Human Factors in Computing Systems
(CHI) (1993), 488–493.

9. Mine, M. R. Characterization of end-to-end delays in
head-mounted display systems. Tech. rep., Chapel Hill,
NC, USA, 1993.

10. Ng, A., Lepinski, J., Wigdor, D., Sanders, S., and Dietz,
P. Designing for low-latency direct-touch input. In ACM
Symposium on User Interface Software and Technology
(UIST), ACM (2012), 453–464.

11. Pavlovych, A., and Stuerzlinger, W. The tradeoff
between spatial jitter and latency in pointing tasks. In
ACM SIGCHI symposium on Engineering Interactive
Computing Systems (EICS), ACM (2009), 187–196.

12. Steed, A. A simple method for estimating the latency of
interactive, real-time graphics simulations. In ACM
Symposium on Virtual Reality Software and Technology
(VRST), ACM (2008), 123–129.

13. Swindells, C., Dill, J. C., and Booth, K. S. System lag
tests for augmented and virtual environments. In
Proceedings of the 13th annual ACM symposium on
User interface software and technology, ACM (2000),
161–170.

14. Teather, R. J., Pavlovych, A., Stuerzlinger, W., and
MacKenzie, I. S. Effects of tracking technology, latency,
and spatial jitter on object movement. In IEEE
Symposium on 3D User Interfaces (3DUI), IEEE
Computer Society (2009), 43–50.

15. Ware, C., and Balakrishnan, R. Reaching for objects in
VR displays: lag and frame rate. ACM Transactions on
Computer-Human Interaction (TOCHI) 1, 4 (1994),
331–356.

16. Watson, B., Walker, N., Ribarsky, W., and Spaulding, V.
Effects of variation in system responsiveness on user
performance in virtual environments. Human Factors:
The Journal of the Human Factors and Ergonomics
Society 40, 3 (1998), 403–414.

	Introduction
	Latency Estimation
	Related Work
	High Accuracy Touch Latency Estimation
	Camera-Display Calibration
	Camera-Touch Calibration
	Dating the captured image
	Estimating latency

	Low Overhead Latency Estimation
	Idea
	Implementation

	Experiments
	Hardware Setup
	High Speed Recording (HSR) experiments
	High Accuracy (HA) experiments
	Low Overhead (LO) experiments
	Novice experiment
	Expert Experiment

	Discussion
	Conclusion and Future Work
	Acknowledgments
	REFERENCES

