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ABSTRACT
Human-computer interaction should be natural. However,
the notion of natural is questioned due to a lack of theo-
retical background and methods to objectively measure the
naturalness of a HCI. A frequently cited aspect of natural
HCIs is their ability to benefit from knowledge and skills that
users develop in their interaction with the real (non-digital)
world. Among these skills, sensory-motor abilities are essen-
tial to operate many HCIs. This suggests that the transfer of
these abilities between physical and digital interactions could
be used as an experimental tool to assess the sensory-motor
similarity between interactions, and could be considered as
an objective measurement of the sensory-motor grounding of
naturalness.

In this framework, we introduce a new experimental
paradigm inspired by motor learning research to assess
sensory-motor similarity, as revealed by the transfer of learn-
ing. We tested this paradigm in an empirical study to ques-
tion the naturalness of three HCIs: direct-touch, mouse point-
ing and absolute indirect-touch. The study revealed how
skill learning transfers from these three digital interactions to-
wards an equivalent physical interaction. We observed strong
transfer of skill between direct-touch and physical interac-
tion, but no transfer from the other two interactions. This
work provides a first objective assessment of the sensory-
motor basis of direct-touch naturalness, and a new empirical
path to question HCI similarity and naturalness.
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INTRODUCTION
Human computer interaction creates sensory-motor experi-
ences that can be more or less natural for the user. While
often cited as a good quality of Human Computer Interac-
tions (HCIs), naturalness is a blurred notion subject to ques-
tioning [16, 22, 23]. The term natural could refer to the user’s
expertise with a given HCI. For example, mouse interaction,
can be considered as natural for many people who have been
using it daily for many years. In this paper, we consider an-
other commonly accepted aspect of natural: the ability to ben-
efit from users’ pre-existing knowledge and skills of the phys-
ical world (e.g. the non-digital world) [14]. In particular, we
propose to assess the sensory-motor grounding of naturalness
through an empirical measure of similarity between physical
and digital interaction: the transfer of sensory-motor skills.

With respect to this aspect of naturalness, mouse interaction
appears as less natural than direct-touch interaction. The
mouse requires users to adapt to a visuomotor transformation:
the mapping of the hand movement in the motor space to the
displacement of the cursor in the visual space, with a dynamic
gain [3]. By contrast, touch interaction on a tactile surface
corresponds to a direct interaction between the user’s body
and the digital object. This direct interaction is supposed to
benefit from the pre-existing skill of manual interaction with
physical objects, which renders direct-touch pointing more
natural than mouse pointing. The argument of naturalness is
often used to explain the widespread success of touch-devices
such as smartphone and tablet computers.

As ubiquitous computing moves the focus of HCI from de-
signing tools that maximize user performance for a specific
task towards the design of “good user experiences” [7], natu-
ralness is becoming a central challenge of HCIs design [31].
A good user experience includes dynamical aspects such as
learning cost or in situ use. These aspects are not captured by
classical approaches of motor skills based on performances
such as the Fitts’ law [8]. New methods and investigations of
human experiences are required to characterize and anticipate
the experience that the user will perceive as good or natural.
In particular, despite the frequent mention of skill transfer in
the definition of naturalness, to our knowledge, there is no
method in HCI to objectively assess the transfer of sensory-
motor skills between the interaction with physical objects and
the interaction with digital objects.
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This work is a first effort towards an objective assessment of
skills transfer between different forms of interaction, inspired
from the motor learning research. This research has exten-
sively studied the transfer of sensory-motor skills for both
speech and limb movements as a “behavioral window” [25]
towards the brain mechanisms that underlie human move-
ment [2, 20, 28]. Transfer of skills is also a core question for
sport and rehabilitation therapies, in particular to assess vir-
tual reality training as a tool to enhance motor learning [12].

We propose a novel experimental paradigm as a first step to-
wards an objective assessment of the sensory-motor ground-
ing of naturalness. The aim is to measure the amplitude of
transfer of a given skill between several interactions with dig-
ital objects and an equivalent interaction with physical ob-
jects. According to previous works in motor learning (e.g.
[9, 21]), the amplitude of transfer (e.g. performance improve-
ment) might be a function of the sensory-motor similarity be-
tween the digital and physical interactions. In other words,
gradients of transfer should be observed as correlates of de-
gree of sensory-motor similarity between the different inter-
actions.

As a first implementation of this rational, we questionned the
sensory-motor similarity of an interaction on a planar surface
with a physical object (a small plastic token, “physical inter-
action”), and three equivalent interactions with a digital ob-
ject (a disc the size of the plastic token, “digital interactions”):
(1) direct touch pointing, (2) indirect touch (trackpad) point-
ing with an absolute positioning, and (3) mouse pointing with
a dynamic gain. These interactions are chosen to vary the
degree of sensory-motor similarity of the digital interaction
with the physical interaction and thus, potentially generate a
gradient of transfer. Participants are trained to a serial tar-
get acquisition task with one of the digital interactions. After
a clear improvement in performances (learning effect), they
are asked to do the same task with the physical interaction.
The improvement of performances in the physical interaction
due to the training with the digital interaction is considered
as transfer effect. The amplitude of transfer is taken as an
objective quantification of the sensory-motor similarity of the
digital interaction with physical interaction.

After reviewing the literature on the topic of natural HCIs, we
expose the main notions and methods from the motor learning
literature that underlie our work. We then detail our experi-
mental paradigm and report on an empirical study based on
this paradigm. This study provides a first objective assess-
ment of the similarity between the three tested digital inter-
actions and the physical interaction, which is interpreted as
an indication of their relative sensory-motor naturalness. We
finally discuss the outcomes of the experiment and conclude.

PREVIOUS WORKS

What is a natural human-computer interaction?
With the development of ubiquitous computers and Post-
WIMP interactions, the notion of natural is now commonly
used in HCI. The notion is however broad and not well de-
fined. Van Dam, for example, relates the naturalness of future

“ideal” interactions to the naturalness of the interaction be-
tween humans, and to the ability of the interaction to become
“invisible to the user” [29]. Jacob et al. extend the “Reality-
Based” aspects of post-WIMP interaction to other natural hu-
man knowledge and skills (e.g. naı̈ve physics, body, environ-
ment and social awareness and skills) [14].

Efforts of definitions and design guidelines have been made
in order to better characterize and anticipate interactions that
users would feel as natural [31]. Naturalness is however also
criticized [22], in particular due to its subjective meaning and
the lack of objective methods and theoretical background to
understand and evaluate how and why an interaction can be
felt as natural. The main issue is that “HCI researchers still
do not understand why some post-WIMP designs are per-
ceived as natural or intuitive, while others are not because
there is no theory, model, or framework about the cognitive
processes that let us perceive UIs this way or the other” [16]
(See also [23]).

Natural HCIs commonly appear as: gestural interactions (1)
that create good user experiences (2), in particular by benefit-
ting from users’ pre-existing skills (3).

A natural interaction should allow users to manipulate digi-
tal objects or communicate with digital entities through their
natural interactive skills: speech and manual gestures [24].
This idea has been criticized as both speech and gestures
are learned through intensive daily uses and are culturally
defined [22]. Involving direct gestures in HCIs also raised
a number of issues. For example, a direct transfer from a
sensory-motor skill with a physical object towards an action
on digital objects could end in domestic drama (e.g. the Nin-
tendo Wii thrown on TV screens while playing bowling [22]).

HCIs were first conceived as tools to optimize a specific task.
By contrast, natural interactions are based on users’ feelings
and experiences: the user should feel the interaction as a natu-
ral sensory-motor experience [31]. This is not the technology
itself that is natural but the way users interact with it [23].
Hence, evaluation criteria progressively shift from usability
and performance towards a more complex “new good”, that
considers the user experience [7]. This creates new interests
for sensory-motor in-situ phenomena [3], embodied and situ-
ated cognition in general [11, 17] and learning and adaptation
in particular [4]. However, few works have studied motor
learning in HCI [4], and the way it influences the user’s ex-
perience [15]. We are not aware of any work that specifically
studied the transfer of sensory-motor learning from one inter-
action to another one.

Benefitting from user pre-existing skills. Wobbrock et al. in-
troduced various methods to exploit users pre-existing knowl-
edge and skills in the definition of gesture sets [32, 33], but
their work was focused on finding easily guessable gestures
rather than measuring a skill transfer. In their Reality-Based
Interactions (RBI) framework, Jacob et al. expose the benefit
of taking advantage of users pre-existing skills to reduce the
cognitive load and the learning cost of the interaction [14].
This idea also appears in one of Wigdor et al.’s design guide-
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lines for natural user interfaces, which is to “leverage innate
talents and previously learned skills” [31].

The rational of our study is that an objective way to evaluate
the sensory-motor naturalness of an interaction with digital
objects is to measure how the sensory-motor skills involved in
this interaction are influenced by similar skills in the physical
world. This approach is inspired from the literature on motor
learning and transfer.

Motor learning and transfer
Despite very successful application of motor control results
in HCI [5, 8], uses of motor learning results are sparse [4].
Our study focuses on the transfer of learning of motor skills.
Considering the broad literature on motor learning, the refer-
ences below should be considered as illustrative.

The term skill covers a large range of phenomena from math-
ematical abilities to driving or running [2]. Here, we focus
on interaction with real or digital objects through direct or
indirect body actions: learned abilities that involved a spe-
cific control of the body via sensory-motor loops to achieve
a specific task. Tennis playing and mouse pointing are clas-
sic illustrations of sensory-motor skills found in the literature
on motor learning [6, 20, 34]. Pointing and reaching tasks
have been extensively studies as experimental models of the
upper-limb motor control and learning (e.g. [6, 19, 20, 21,
34]).

Learning of a motor skill is an “improvement, through prac-
tice, in the performance of sensory-guided motor behav-
ior” [19].

Transfer of motor learning corresponds to a positive effect
of past experiences on new ones, while negative effects are
called interferences [20]. For example, previous expertise in
typing on a QWERTY keyboard has negative effect or inter-
feres with the use of an AZERTY keyboard, while learning
to type with a large QWERTY keyboard may help, or trans-
fer, to typing on a smaller QWERTY keyboard. Transfer
and interference are extensively investigated in motor learn-
ing. These investigations not only aim at evaluating if a given
training could improve the performance in another task or
situation, but also at assessing the fundamental question of
the nature of the representations that underlie motor control
(e.g. [2, 20, 25, 28, 34]).

Motor learning and transfer of arm-movements are studied
in laboratory mainly using two types of tasks: (1) common
pointing/reaching tasks or speech tasks under unusual but sys-
tematic perturbation of movement or feedbacks (e.g. [13, 20,
21, 28]); (2) novel tasks, such as tracking more or less pre-
dictable trajectories [35] or pointing at targets in more or less
predictable orders [10]. Our experimental task is based on the
latter.

The motor learning literature indicates that skill learning is
globally specific: in other words, to observe a transfer, the
training and test situations must be very similar. However,
gradients of transfer can be observed as correlates of the sim-
ilarity between the training and testing experiences (e.g. [9,
21]). In our study, we attempt to observe a gradient of transfer

as a correlate of the sensory-motor similarity between a phys-
ical interaction and various digital interactions. This similar-
ity could be used as an objective evaluation of the naturalness
of the digital interactions at the sensory-motor level.

AN EXPERIMENTAL PARADIGM TO STUDY
THE TRANSFER OF LEARNING IN HCI
Learning and transfer of learning are assessed in controlled
situations based on a paradigm that includes three mains
steps [10]: (1) A baseline phase that allows to assess par-
ticipants’ performance before learning (e.g. pointing at tar-
gets in a given order A for a short period); (2) A training
phase during which participants repeat the task (pointing in
order A) for a given duration. This phase could be achieved
on a single session on one day or several sessions over several
days; (3) A test phase for transfer during which participants
achieve a more or less similar task (e.g. pointing to the same
targets in a new order B). Learning is assessed through the
analysis of the progression of performance from the baseline
to the last training period. Transfer is assessed by comparing
performances in the test phase to that in the baseline.

We adapted this paradigm to the purpose of studying transfer
of learning in the execution of an identical task achieved with
different forms of interaction. In the remainder of this paper,
we will use the expression “physical interaction” for “inter-
action with physical objects”; the expression “a HCI” to de-
note a common form of human-computer interactions such as
direct touch, or mouse-pointer interaction; and the expression
“a digital interaction” to denote an interaction with digital ob-
jects using a particular HCI.

Our first idea was to observe a transfer from physical interac-
tion towards digital interaction. However, training all subjects
in one condition (physical) and testing the transfer towards
other conditions (the tested HCIs) present two main issues
well known in the motor learning literature [10, 18, 20, 21,
28, 30]: (1) it provides no indication of the potential improve-
ment effect for each condition. Some HCIs offer large perfor-
mance improvement from training, others don’t. As a result,
(2) it leads to compare apples to oranges: i.e. the percent-
age of improvement for a given HCI-A is not equivalent to
the percentage of improvement for another HCI-B. Problem
(1) can be solved by introducing one control group per HCI
(which makes the design more complex) but this does not
solve problem (2). Therefore, the standard approach in the
motor learning literature is to compare the amount of tranfer
from different conditions towards a single condition. We use
this “reversed” approach because it allows the indisputable
comparison of the amount of transfer from various digital in-
teractions towards a single physical interaction.

By reversing the experimental design, we are now observ-
ing how sensory-motor skills acquired using a particular HCI
with digital objects transfer to the interaction with physical
objects. This may appear as moving away from the concept
of naturalness as the ability to use pre-existing skills from
physical interaction. This raises the question of the symmetry
of the transfer: if a skill acquired with a digital interaction
transfers well in physical interaction, does this mean that the
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Figure 1. Observing a transfer of learning. A “Control” group of par-
ticipants is trained for a novel task executed with physical interaction.
The performance of another “Tested HCI” group of participants is mea-
sured after prior training on several blocks of trials on a similar task
executed with the tested HCI. Transfer is observed if the performance of
the tested HCI group with physical interaction is better than the initial
performance of the control group.

opposite is true? While there are no obvious rational to sug-
gest a strong asymmetry, this remains an open question that
we will discuss at the end of this article. However, in our
study the transfer of learning is not seen as an end but rather
as a means to study the similarity between various forms of
interaction. In this regard, observing a strong transfer of skills
from a digital interaction towards physical interaction is as
much an indication of the similarity of the two interactions
than the opposite.

The following steps summarize our experimental paradigm:

• A control group of participants is trained to a novel task
with a physical interaction. The initial performance of this
group (i.e. block #1 of the control group in Figure 1, left)
serves as the baseline;

• For each HCI, a test group of participants is trained to
a similar task, but with digital objects moved using the
tested HCI. Sensory-motor learning of the task is observed
through performance increase over the training session (i.e.
the red arrow in Figure 1);

• After a number of training blocks made of several repe-
tition of the same task, the tested HCI group executes the
task again but this time with physical interaction (i.e. block
#7 on Figure 1). Transfer is assessed by comparing the per-
formance in this last block with the baseline performance
(black arrow on Figure 1).

• A gradient of transfer is observed by comparing the trans-
fer effects from the different tested HCI to the physical in-
teraction.

Figure 1 illustrates a case where user performance with the
digital interaction is generally better than with the physical
interaction. But even in the opposite case, a transfer of learn-
ing would still be demonstrated as long as the performance
with the physical interaction is significantly higher in the test
group than in the control group. This underscores the inde-
pendence between transfer of learning and user performance.

We chose a between-subjects design because any experimen-
tal session provides some training that potentially influences
participants’ behavior in the following sessions. The diffi-
culty is then to dissociate, in subjects’ performances, how

much is due to transfer and how much is due to repeated ses-
sions. This is not an issue in Fitts paradigms [26] which fo-
cus on the trained performance (i.e. discarding the training)
and mitigate transfer effects by balancing the order of presen-
tation. This is a major problem in paradigms that measure
learning and transfer. However, as the general performance
of participants is variable, groups must be balanced, so that
the initial performance difference between groups cannot ex-
plain the performance difference between the control group
and the test groups.

THE EXPERIMENT
We conducted an empirical study based on this paradigm in
order to evaluate the similarity of various HCIs with an equiv-
alent physical interaction.

Experimental task
The task was chosen to meet the following requirements:

• the task can be performed both with a physical and digital
objects, and with the different HCIs of interest;

• the task is novel to the participants, so that all participants
are supposed to be similar in regard to their knowledge and
practice of the task at the beginning of the experiment;

• the task is difficult enough that learning can be observed as
a performance increase through training.

We chose a serial target acquisition task as previous work
showed that it was appropriate to study motor learning [10].
With this kind of task, improvement in participant perfor-
mance can be the result of sensory-motor learning, which de-
pends on the interaction, but also the result of learning the se-
quence of targets, which is independent of the interaction. As
we wanted to contrast the sensory-motor learning from vari-
ous interactions, we aimed at reducing the effect of the learn-
ing of the sequence. We thus chose a very simple constant
order for the target positions so that it was quickly learned in
few trials. Our objective was that performance improvement
would result mostly from the learning of two new sensory-
motor skills: acquiring targets repeatedly at well known po-
sitions (e.g. by developing a proprioception of the target po-
sitions), and anticipation (e.g. using the best trajectory in the
approach of a target in preparation of the acquisition of the
next target).

1

2

3

45

6

7

8 51 2 3
Blocks
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ee
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4

Figure 2. Left: the sequence of targets. The numbered white discs repre-
sent targets, the red disc represents the object controlled by participants.
Disc size, target size and positions are represented to scale. Dashed ar-
rows and numbers are illustrations of the order, they were not shown to
the participants. Right: representation of the speed of target acquisition
during pauses.
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Participants had to move a red disc object (either physical
or digital) on the top of a circular target which could take 8
different positions on display, as illustrated in Figure 2, left.
The display was set horizontally on a desk. The outermost
target centers defined a 430mm × 200mm rectangle. Tar-
get diameter was 64mm, object diameter was 50mm. The
targets were acquired when the object was entirely within the
boundaries of the target, which translates in terms of Fitts’
law [26] to a target size of 64−50 = 14mm. Inter-target dis-
tance was either 430mm (horizontal) or 438mm (diagonal).
Hence, every object placement had a Fitts index of difficulty
of ≈ 5 bits.

In a block of trials, participants executed a sequence of 64
target acquisitions made of 8 repetitions of the sequence pre-
sented in Figure 2, left. They initiated a block by moving the
object on top of a “start area” located at position #8. Then, af-
ter a short delay, the first target appeared at position #1. The
targets disappeared as soon as they were acquired, and the
next target was displayed. Target acquisition was thus a goal
crossing task [1] rather than a pointing task. In particular,
target acquisition did not require the object to stop on top of
the target, which fostered anticipated motion towards the next
target. We also indicated the position of the next target as a
hollow circle to foster anticipation and reduce the effect of
learning the sequence. Participants were instructed to acquire
the targets as fast as possible. They were explicitly asked to
find the right speed-accuracy trade-off in order to go through
each block of 64 targets as fast as possible.

After each block of trials, participants were asked to relax
for 30 s. During this pause, an indication of their speed was
displayed in the form of a bar chart. This is illustrated in
Figure 2, right, in the case of the pause coming after the 5th
block. The bar for the first block had a fixed size, the height
of the other bars indicated the average speed of target selec-
tion during each block relative to the first block. The goal
of this chart was to encourage participants to maintain their
effort and to stay at their maximal performance across the 10
training blocks.

As a between-subjects design, any difference in groups’ per-
formances after the training session could be related either
to the training, or to unbalanced average abilities between
groups. In order to avoid the second possibility, the groups
of participant were built according to the participants’ perfor-
mance in a first group balancing task. The group balancing
task was chosen to be representative of participants’ ability to
quickly move the physical disc on top of targets. This task
was also chosen so as to avoid any training to the main exper-
iment’s training task: the targets were positioned differently
than in the training task (in a five arms star configuration)
and anticipation was prevented by requiring the participants
to move the physical disc to a start area after each target ac-
quisition, and by displaying the next target after a varying
delay (in the range 200 ms to 800 ms). The group balancing
task was made of 64 target acquisitions.

Interactions
In the physical interaction, participants had to slide a plastic
disc of diameter 50mm and height 4mm. The disc had soft

fabric at the bottom in order to provide smooth sliding on the
surface. Soft fabric was also taped on its top side it order
to improve the finger grip on the disc, as compared to bare
plastic.

In this study, we focused on the two most common forms of
HCI, mouse pointing and direct-touch, and on a more specific
form of HCI: indirect-touch in absolute mode. We introduced
the latter as an intermediate between the two formers in terms
of similarity with the physical interaction. All the three HCIs
were used to control the position of a red digital disc of diam-
eter 50mm.

As it can be expected, the digital disc was controlled by land-
ing a finger on its surface with direct-touch, and by pressing
on the mouse button while the pointer was on its surface with
mouse pointing. For the mouse interaction, participants were
told that it was not necessary to maintain the mouse button de-
pressed: once acquired, the digital disc remained under con-
trol of the mouse for the entire block. Doing so, we focused
on participant’s control of the mouse position and eliminated
the effect of pressing on the button. Mouse pointing was used
with the standard control-display transfer function of Mac OS
X with “Tracking speed” set to level 3 on the 10-level scale
of the control panel. Control of the digital disc with indirect-
touch on a trackpad was more specific: we did not use a com-
mon transfer function with relative control and dynamic gain
as used on most laptop computers. Instead, the trackpad was
used in an absolute mode, similar to digitizing tablets: when
a finger landed on the trackpad, the digital disc teleported to
the corresponding position on the display. However, telepor-
tation very rarely occurred during the experiment as the task
was best performed with the finger remaining in contact with
the trackpad during the entire block of trials. For the two indi-
rect HCIs, the mouse or trackpad were placed to the left or to
the right of the display surface, depending on the participant’s
handedness.

The rational of these choices was to create gradients of simi-
larity between the physical interaction and the digital interac-
tions. The tested interactions could be ordered according to
their respective sensory-motor overlapping with the physical
interaction as followed:

• direct-touch was the closest to the physical interaction as it
involved similar visuomotor associations and arms config-
uration. Differences with the physical interaction included
a delay in the visual feedback, the absence of somatosen-
sorial (tactile) feedback to perceive the texture, and a dif-
ference in friction forces

• indirect-touch (trackpad) was considered as intermediate
as it introduced a spatial transformation between the finger
and the object motion. However, used in absolute mode,
the simple linear transformation was less radical than with
mouse pointing. It also involved a similar configuration of
the finger;

• mouse pointing was considered the furthest to physical in-
teraction due to the speed-dependent transformation be-
tween mouse and object motion and different finger con-
figuration.
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Figure 3. Implementing direct-touch with optical tracking. An optical
marker is taped on the nail. A piece of soft fabric is taped underneath
the finger to improve sliding.

Participants and procedure
28 volunteers (9 females, 19 males) participated in the exper-
iment, split into the following four groups of 7 participants
according to the training device:

• The control group (CTR) was trained with the physical
disc, the mean age was 31.9 (range [25-41]), all partici-
pants were male,

• The touch group (TOU) was trained with direct touch, the
mean age was 29.0 (range [22-39]), it included 3 females,

• The trackpad group (PAD) was trained with the trackpad,
the mean age was 32.0 (range [23-43]), it included 3 fe-
males,

• The mouse group (MOU) was trained with the mouse, the
mean age was 30.6 (range [21-42]), it included 3 females.

The participants were not informed about the expectations of
the experiment prior the completion of the experiment. They
were all graduated students or university staff used to com-
puter, mouse or touch interactions.

Participants were instructed that the experiment was anony-
mous, and that it included three sessions separated with
breaks:

• Group balancing session. Participants performed the 64
target acquisitions of the group balancing task. Their per-
formance was immediately computed and they were as-
signed to a group so as to balance the average performance
of each group.

• Training session. Participants performed 10 blocks of the
training task using one of the four interactions depending
on their group.

• Test (or transfer) session. After training, all participants
performed 4 blocks of the training task by moving the
physical disc.

Overall, participants finished the tree sessions in about half
an hour.

Apparatus
The experimental tasks were performed on a 1920 × 1080
pixel 120Hz LCD monitor which foot was removed so that

it could be taped horizontally on a desk. The monitor was
driven by custom developed software running on a 3.4GHz
workstation.

The physical disc was equipped with 3 spherical optical
markers captured by 2 Flex 13 120 Hz Optitrack cameras.
The outputs of the cameras were processed by the tracking
software running on a dedicated 2.6GHz workstation, the
computed position was then sent over the network to the main
workstation. The same optical tracking system was used to
implement the direct-touch interaction on the non-touch sen-
sitive monitor: an optical marker was attached to the pointing
finger of the participant, as shown in Figure 3. In addition, a
small patch of soft fabric was taped at the bottom of the fin-
ger to improve the sliding of the finger on the surface and to
prevent burning sensations during the high speed dragging of
the digital disc.

We used a standard wired optical mouse for the mouse
pointing interaction. For indirect-touch, we used a wireless
130×110mm Apple magic trackpad. The raw touch position
on the trackpad was used to implement an absolute position
mapping to the display. Only a subpart of the height of the
trackpad was used in order to provide an isomorphic x − y
mapping on the 16/9 display.

Results
We based our analyses on the duration of the target acquisi-
tion (in time) measured as the time span between the appear-
ance of a target and the first time when the disc (either phys-
ical or digital) is entirely within the target boundaries. For
each subject and trial block, we withdraw trials with in time
values higher than 1.5 the interquartile range from the mean
of the block. This effectively removes failed trials where a
participant fails to acquire the target, anticipates the acquisi-
tion of the next target, and then realizes the failure and comes
back to the current target.

The third block of the test session (block 13, Figure 4) of one
participant in TOU was removed due to outlier behavior of
the participant during this specific block.

The Figure 4 displays the average in time values for each
group and block over the whole experiment. We can observe
that:

• The ability to interact with the physical object before train-
ing is equivalent for the four groups;

• The performances for MOU and PAD are worst than TOU
and CTR, at the onset but also at the offset of training;

• The performances improve over the training phase for the
four groups, with variable degree of improvement accord-
ing to the HCIs;

• The performances are better at the onset of the transfer
phase for CTR and TOU than PAD and MOU. Moreover,
the progression of performances over the four blocks of the
post-phase for PAD and MOU are similar to that observed
over the four first blocks of training of CTR.

We will now analyze in more details these different points
and their statistical reliability.
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Figure 4. Mean target acquisition time, with 95% confidence intervals, for each group and each block of trials and for the three sessions.

Equivalent abilities in the physical interaction
As a result of the method used to constitute the groups,
subjects’ performances during the group balancing task was
similar for the four groups with average in time in the
range 0.52 s to 0.53 s. A between subjects ANOVA shows
no significant effect of the group on the group balancing task
performances (F (3, 24) = 0.25, p > .86).

Training session
In order to investigate the effect of HCIs on global perfor-
mances and on learning, we focused on the first and last
blocks of the training session. We ran a mixed ANOVA with
the group as a between subject factor and the block (1 vs.
10) as a within subject factor. It showed a significant ef-
fect of the group (F (3, 24) = 39, p < .0001), the block
(F (1, 24) = 221, p < .0001) and an interaction between the
two factors (F (3, 24) = 5.5, p < .01). We then ran post-hoc
tests to evaluate differences in performance according to the
HCIs and to the block (Tukey’s HSD for the group factor and
paired sample t.test with a Bonferroni correction for the block
factor).

Different performances according to the HCI. The task re-
quired large motions of the controlled object on the display
surface. As MOU and PAD both use a control-display gain
to amplify the motions in motor-space, we expected smaller
in time compared to direct interactions (CTL and TOU).
We actually observed the reverse: during the first block of
training, the average in time was 0.92 s for MOU, 0.91 s for
PAD, 0.58 s for TOU, and 0.56 s for CTR. Even at the end
of the training, in time was still more than 0.24 s longer for
PAD (0.75 s) and MOU (0.68 s) than CTR (0.44 s) and TOU
(0.43 s). Comparisons between groups’ performances during
the first and the last block separately showed no significant
differences between PAD and MOU (p = 0.9, for the first
block and p = .06 for the last block). Similarly, TOU and
CTR were not different in the first and last block (p > .9). By
contrast, in time for both TOU and CTR was significantly
smaller than for MOU and PAD in all block comparisons
(p < .0001).

Learning effect. The learning effect was significant for each
group (t(6) > 4.5, p < 0.05, for all the within-subject com-

parisons between the first and the last block of each group af-
ter a Bonferroni correction). Over the training phase, in time
significantly decreased on average by: −0.12 s for CTR (a
21% improvement), −0.15 s for TOU (a 25% improvement),
−0.16 s for PAD (a 18% improvement) and −0.24 s for MOU
(a 26% improvement).

Transfer
We tested if the training with each HCI influenced partici-
pants’ performances when they switched to the physical in-
teraction. For this, we specifically focused on the first block
of the training session of the control group, which indicates
the baseline performance with the physical interaction with
no training at all, and on the first block of the test session
for all groups, which still indicates the performance with the
physical interaction, but this time after training with various
interactions depending on the group. This focus is illustrated
on Figure 5. Between-subjects ANOVAs revealed a signifi-
cant effect of the group, both when comparing the baseline
performance (F (3, 24) = 6.0, p < 0.01) and the trained per-
formance (F (3, 24) = 12.7, p < 0.001) of the control group
with the performance after training of the test groups. Perfor-
mance improved by 20% from the baseline when trained with
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Figure 5. Close-up on Figure 4 for the first block of the training session
of the control group (train #1), and the first block of the test session of
all groups (test #1).
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TOU (p < 0.05). On the contrary, no significant variation
from the baseline performance was observed when training
with PAD or MOU (p > 0.9): the initial test performance
was 4% lower and less than 1% higher than the baseline for
PAD and MOU, respectively. Performance after training for
the CTL or the TOU groups was very similar, differing by
only 1%.

DISCUSSION
The aim of this work was to propose an experimental
paradigm to objectively assess the sensory-motor grounding
of the naturalness of various HCIs. We use this paradigm
to empirically questionned the sensory-motor naturalness of
three HCIs. This paradigm rests on the rational that the nat-
uralness of an HCI is anchored in the similarity of the sen-
sory motor-skills involved in the HCI and those involved in
the interaction with the physical world. In our paradigm, the
sensory-motor similarity is operationalized in a well-known
and extensively investigated phenomenon in the motor con-
trol literature: the transfer of sensory-motor learning. Using
a serial target crossing task, we observe that the skills learned
through training with direct-touch transfer fully to the physi-
cal interaction while no skill transfer is observed when train-
ing with indirect-touch or mouse pointing. According to our
rational, this means that direct-touch is more similar to the
physical interaction at a sensory-motor level, which provide
an empirical and objective correlate of the widely circulated
belief that direct-touch is a more natural form of interaction
than mouse pointing. Taken together, the results of the ex-
periment are not trivial: they include a number of unexpected
aspects that we will now discuss and interpret.

Interpretation of the observed transfer profiles
The study was designed to observe a gradient of trans-
fer by manipulating the sensory-motor similarity be-
tween the three tested HCIs and the physical interac-
tion. In particular, considering the sensory-motor cou-
plings involved in the HCIs, we were expecting the
following trend in the first block of the test-session:
CTR > TOU > PAD > MOU > 0. What we
observed, however, was a binary profile of transfer with a full
transfer for direct-touch and no transfer for the two other in-
teractions: CTR = TOU > PAD = MOU = 0.

CTR = TOU
The first unexpected result concerning the transfer effect is
the absence of difference between the control and the direct-
touch groups. Despite substantial differences in sensory-
motor associations for the two interactions (e.g. delay in vi-
sual feedback, absence of inertial mass, different tactile feed-
back between the display and the physical disc, different fric-
tions), shifting from direct-touch to the physical interaction
seems transparent: participant trained with direct-touch per-
formed similarly than participants trained with the physical
interaction. This may be explained in the current study by the
limited delay of the visual feedback thanks to the high fre-
quency/low latency tracking, and the limited friction forces
of the physical token in the physical interaction. It would be
interesting to study the effect of various characteristics of the

direct-touch interaction, such as feedback latency or friction,
to observe how they affect transfer.

PAD = MOU = 0
Indirect-touch and mouse pointing showed no transfer, de-
spite the observation of a learning effect in the training ses-
sion with both interactions and despite offering quite differ-
ent sensory-motor controls, with the absolute PAD control
arguably closer to the physical interaction than the dynamic
gain control of the mouse. These results support the idea that
sensory-motor transfer is very specific, as previously shown
in motor learning research [21, 28]. An important repercus-
sion of the specificity of transfer is that, when attempting to
create novel natural interactions, designers may not be able
to depart very far from a faithful reproduction of a physical
interaction. Here again, it will be interesting to study more
systematically how different intermediates between TOU and
PAD can exhibit a transfer of learning to physical interac-
tion. Absolute indirect-touch, for example, could be “moved”
closer to physical interaction by using a control-display gain
of 1 (i.e. using a pad with the same size of the display). Such
study may inform about the fundamental sensory-motor re-
quirements of natural interactions.

Previous works also showed that mouse vs. touch navigation
lead to different improvements of spatial memory and that
kinesthesic cues involved in touch are important for spatial
memory [15, 27]. In our case, MOU and PAD may lead to
different memorization of the target trajectory than the CTR
condition, while the exploration with TOU may be close to
CTR. More studies are required to better understand the rela-
tionship between sensory-motor experience and the cognitive
aspects of naturalness [15].

Limits and improvements of the paradigm
Transfer effect vs. performance effect
The experimental task that we used was performed more effi-
ciently with the direct interaction techniques (physical and
direct-touch) compared to the indirect ones (indirect-touch
and mouse). One could argue that the absence of transfer
from indirect-touch and mouse is related to the bad perfor-
mances in these HCIs as compare with direct-touch. How-
ever, the learning curves in Figure 4 show that performances
clearly increased for these two interactions and that the higher
performance of the mouse, compared to indirect-touch, did
not end up in a greater transfer. Even so, it would be inter-
esting to create an experimental task that yields better per-
formance with mouse pointing than with direct-touch to test
the independence between task performance and transfer of
learning.

From digital to physical
As explained above, we chose to reverse the experimental
paradigm: we measured transfer from digital to physical
rather than the more intuitive opposite. We assumed that a
transfer in either directions was an indication of the similar-
ity of the sensory-motor skills involved in the two interac-
tions, and that if two interactions use similar sensory-motor
skills, then newly learned skills should transfer either way.
This points to further experimentations aimed at evaluating
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the symmetry of the transfer. This could be done by measur-
ing a baseline performance of a control group interacting with
direct-touch interaction, and measuring a transfer on another
group trained with physical interaction.

Beyond naturalness, why are transfer effects important
for HCI
As mentioned in the “previous work” section, ubiquitous
computing orients HCI towards new methods that should
help evaluating what is a good user experience [7, 31]. At
the same time, future HCIs might be more and more non-
representational and thus intrinsically more oriented towards
sensory-motor skills [11]. The consequence is that HCI de-
signers now need to better understand sensory-motor skills,
their adaptation and plasticity, especially to anticipate if and
how the modern human, used to many forms of digital in-
teractions, will be able to extend her/his sensory-motor skills
to integrate novel interaction designs. Transfer of learning
should thus be studied not only to and from physical interac-
tion, but also between digital interactions.

Study of sensory-motor learning and transfer is also impor-
tant at a more fundamental level: new technologies come
with more and more new sensory-motor skills. These skills
may interact together but also influence real word behaviors.
For example, Wei et al. recently compared visuomotor learn-
ing for computer and non-computer users [30]. Using a clas-
sic direct finger pointing task, they observed greater transfer
of visuomotor training with computer users than with non-
computer users. This suggests that computer use, and in par-
ticular the daily exposition to the mouse visuomotor trans-
formation, changes our subsequent visuomotor abilities in
the non-digital world. This study and similar ones in mo-
tor learning, neurosciences and psychology also emphasized
the relevance of studies of learning and transfer in laboratory
to assess more global phenomena. As a consequence, mod-
els of sensory-motor learning may be developed and used
in HCI in order to simulate the consequences of the daily
use of some forms of human-computer interaction on human
sensory-motor abilities.

CONCLUSION
HCI designers need theories to better understand user experi-
ence and tools to anticipate what forms of interaction would
create a good user experience [7, 11, 16, 23]: interactions that
will be easily integrated to user sensory-motor competences
in the real world, but also that will have no negative effects on
these competences. Design guidelines have been presented
towards the conception of natural user interfaces [31]. How-
ever, these guidelines do not include methods to objectively
assess the different rules that designers should respect to cre-
ate an interaction that could be natural to the user, that will
respect her/his sensory-motor abilities and extend beyond.

Facing the lack of theoretical and empirical background with
regard to naturalness in HCI, our contribution was to explore
the literature of sensory-motor skills learning and exploit the
advances in this field to propose a first step towards an ob-
jective measurement of the sensory-motor basis of HCI nat-

uralness. We introduce a classic paradigm in motor learning
research: the transfer of sensory-motor skills.

In an empirical experiment, we found that the learning of
a novel task with direct-touch interaction transferred very
well to physical interaction, a first objective indication of the
sensory-motor similarity of the two interactions, and an indi-
cation of the naturalness of direct-touch. We also observed
that the transfer of learning may be very specific and that the
design space around physical interaction is not very large for
the design of novel human-computer interactions that use nat-
ural sensory-motor skills.

As mentioned elsewhere, “HCI is at a crossroads” between
the digital and physical world [17]. Our feeling is that many
authors look for answers in psychology or cognitive sci-
ences [3, 16, 17] but omit what is actually one of the building
blocks of HCI: sensory-motor learning. The connection with
embodied and situated cognition is certainly a necessity for
HCI to progress towards more and more embodied and nat-
ural interactions, but the interest for motor learning theories,
models and methods will certainly be a fruitful road towards
naturalness.
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